network architecture – Expert Network Consultant https://www.expertnetworkconsultant.com Networking | Cloud | DevOps | IaC Mon, 18 Sep 2023 09:54:55 +0000 en-GB hourly 1 https://wordpress.org/?v=6.3.5 Understanding the Collapsed Core Network: Streamlining Network Architecture for Smaller Enterprises https://www.expertnetworkconsultant.com/installing-and-configuring-network-devices/6307/ Tue, 19 Sep 2023 09:46:37 +0000 http://www.expertnetworkconsultant.com/?p=6307 Continue readingUnderstanding the Collapsed Core Network: Streamlining Network Architecture for Smaller Enterprises]]> In the ever-evolving realm of enterprise networking, the quest for an efficient and cost-effective network architecture is constant. Two prominent models frequently employed in enterprise campus network design are the three-tier and two-tier layered models. In this article, we delve into the concept of a “Collapsed Core Network” – a term that often sparks curiosity among network administrators and architects.

What Exactly Is a Collapsed Core Architecture?

In a conventional three-tier network model, the campus network is structured into three distinct layers, each serving a specific function. The core layer plays a pivotal role in inter-site transport and routing, handling critical server and internet connections. The distribution layer manages the connectivity between the core and access layers, while the access layer grants network access to end users, including devices such as PCs and tablets.

While this three-tier model is indispensable for intricate campuses with diverse needs, it’s worth exploring more streamlined options, especially for smaller or medium-sized campus networks. This is where the “Collapsed Core Architecture” comes into play. In this model, the core and distribution layers are merged into a single entity, simplifying the network design and management process.

Benefits of Collapsed Core Networks

The Collapsed Core Network operates in a manner similar to its three-tier counterpart, but it offers unique advantages tailored to the needs of smaller campuses:

1. Lower CostsBy amalgamating the core and distribution layers, a collapsed core network significantly reduces the hardware requirements, resulting in cost savings. This model provides an opportunity to harness the benefits of the three-tiered architecture without breaking the budget.

2. Simplified Network ProtocolsWith only two layers involved in communication, the network’s protocol complexity is reduced, minimizing potential protocol-related issues.

3. Designed for Small CampusesThe collapsed core model is purpose-built for small and medium-sized campuses, ensuring that they can enjoy the advantages of a three-tiered model without the burden of unnecessary equipment or complexity.

Limitations of Collapsed Core Networks

While collapsed core networks offer compelling benefits, they do come with certain limitations, which are essential to consider:

1. ScalabilityCollapsed core networks have limited scalability, making it challenging to accommodate rapid growth in terms of additional sites, devices, and users. Cisco suggests that a small network supports up to 200 devices, while a medium network caters to up to 1000. Beyond this scope, transitioning to a three-tier model may become necessary.

2. ResiliencyThe streamlined design of collapsed core networks means there is less redundancy to mitigate individual component failures. While the network remains reliable, the reduced redundancy does entail some trade-offs in terms of resiliency.

3. ManageabilityThe lower redundancy can complicate the management process, especially when dealing with faulty components or distribution policy adjustments. Careful consideration and planning are required to minimize network downtime during such scenarios.

Is a Collapsed Core Design Right for You?

For small and medium-sized campuses seeking the robustness of a three-tiered network architecture without the associated budget constraints and technical complexities, a collapsed core network can be an ideal solution. However, campuses with rapid growth expectations should be prepared to transition to the full three-tiered design when necessary, as scalability, resiliency, and manageability are considerations that can’t be ignored.

In conclusion, the choice of network architecture ultimately depends on your specific needs, resources, and growth expectations. A collapsed core network offers an efficient compromise between complexity and cost-effectiveness, making it a viable option for many smaller enterprises in their pursuit of a resilient and scalable network infrastructure.

Some useful links to Cisco’s resources on the subject of network architecture and design, specifically focusing on the Collapsed Core Network and related concepts:

1. Cisco Campus Network Design Guide: Cisco’s comprehensive guide on campus network design, which covers various architectural models, including the Collapsed Core Network.

2. Cisco Enterprise Network Architecture: Explore Cisco’s solutions and insights into enterprise network architecture, including resources on designing scalable and resilient networks.

3. Cisco Networking Academy: Access Cisco’s Networking Academy, a resource-rich platform offering courses and materials on network design, configuration, and troubleshooting.

4. Cisco Design Zone: Cisco’s Design Zone provides practical design and deployment guides for various network scenarios, including those relevant to the Collapsed Core Network.

These links will provide readers with valuable information and insights from Cisco, a leading authority in the field of network architecture and design.

]]>
Building a Resilient Enterprise Network: A Step-by-Step Guide to Implementing a Three-Tier Design with Cisco Commands https://www.expertnetworkconsultant.com/expert-approach-in-successfully-networking-devices/building-a-resilient-enterprise-network-a-step-by-step-guide-to-implementing-a-three-tier-design-with-cisco-commands/ Fri, 31 Mar 2023 23:08:22 +0000 http://www.expertnetworkconsultant.com/?p=6063 Continue readingBuilding a Resilient Enterprise Network: A Step-by-Step Guide to Implementing a Three-Tier Design with Cisco Commands]]> The Three-Tier design is a network architecture that is commonly used in enterprise environments. It consists of a Core layer, a Distribution layer, and an Access layer. The Core layer provides high-speed connectivity and acts as the backbone of the network, the Distribution layer provides access to the Core layer and aggregates traffic from the Access layer, and the Access layer provides access to end devices such as servers, workstations, and printers. This design is also known as the Collapsed Core design because the Core layer and the Distribution layer are combined into a single layer.

To configure a Three-Tier design using Cisco commands, follow the steps below:

Configure the Core layer:

Configure the Core layer switches with high-speed links to provide the backbone of the network.
Configure the switchports connected to the Distribution layer switches as trunk ports.
Configure VLANs on the Core layer switches.

Sample Cisco commands:

interface GigabitEthernet0/1
switchport mode trunk
switchport trunk allowed vlan 10,20,30

Configure the Distribution layer:

Configure the Distribution layer switches with uplinks to the Core layer switches and downlinks to the Access layer switches.
Configure the switchports connected to the Core layer switches as trunk ports and the switchports connected to the Access layer switches as access ports.
Configure VLANs on the Distribution layer switches.

Sample Cisco commands:

interface GigabitEthernet0/1
switchport mode trunk
switchport trunk allowed vlan 10,20,30

interface GigabitEthernet0/2
switchport mode access
switchport access vlan 10

Configure the Access layer:

Configure the Access layer switches with uplinks to the Distribution layer switches.
Configure the switchports connected to end devices as access ports.
Configure VLANs on the Access layer switches.

Sample Cisco commands:

interface GigabitEthernet0/1
switchport mode access
switchport access vlan 10

interface GigabitEthernet0/2
switchport mode access
switchport access vlan 20

Configure Spanning Tree Protocol (STP):

Configure STP to prevent loops in the network.
Configure the Core layer switches as the root bridges for each VLAN.
Sample Cisco commands:

spanning-tree mode rapid-pvst
spanning-tree vlan 10,20,30 root primary

Configure Link Aggregation Control Protocol (LACP):

Configure LACP to provide link redundancy and load balancing between switches.
Sample Cisco commands:

interface GigabitEthernet0/1
channel-group 1 mode active

Configure VLANs:

Configure VLANs on the Core, Distribution, and Access layer switches to segment the network.
Assign ports to VLANs based on the device type and location.
Sample Cisco commands:

vlan 10
name Sales
vlan 20
name Engineering
vlan 30
name Marketing

Verify the configuration:

Verify the configuration by checking the switchport settings, VLAN configuration, and STP status.
Sample Cisco commands:

show interfaces GigabitEthernet0/1 switchport
show vlan brief
show spanning-tree vlan 10,20,30

By following these steps, you can configure a Three-Tier design using Cisco commands.

Follow a previous article on building a two tier campus network.
Design and Build a Two-Tier Campus Network Architecture

Follow this Cisco Validated Design for Inspiration.

Cisco Meraki has some good validated design ideas here.

]]>