valid host range – Expert Network Consultant https://www.expertnetworkconsultant.com Networking | Cloud | DevOps | IaC Tue, 14 Mar 2023 14:34:28 +0000 en-GB hourly 1 https://wordpress.org/?v=6.3.5 Subnetting Examples https://www.expertnetworkconsultant.com/expert-approach-in-successfully-networking-devices/subnetting-examples/ Fri, 17 Mar 2023 00:43:51 +0000 http://www.expertnetworkconsultant.com/?p=5934 Continue readingSubnetting Examples]]> Subnetting is the process of dividing a larger network into smaller sub-networks, known as subnets. Subnetting allows for better management of IP addresses and can improve network performance by reducing broadcast traffic. In this article, we will explore some subnetting examples to help you understand how subnetting works.

Example 1: Subnetting a Class A Network

Let’s say we want to subnet the Class A network 10.0.0.0/8 to create smaller subnets for different departments in our organization. We want to create 4 subnets with a maximum of 2,000 hosts per subnet.

To create 4 subnets, we need to borrow 2 bits from the host portion of the IP address. This leaves us with 14 bits for the host portion of the IP address, which gives us 16,384 IP addresses (2^14) per subnet.

To determine the subnet mask for each subnet, we need to determine the value of the bits we borrowed. In this case, we borrowed the first 2 bits, which gives us a value of 192 (11000000) in binary. Therefore, the subnet mask for each subnet will be 255.255.192.0.

The table below shows the network address, subnet mask, and valid host range for each subnet:

subnetting examples for class a

In this example, we created 4 subnets, each with a subnet mask of 255.255.192.0. This means that each subnet has 16,384 IP addresses available for hosts.

Example 2: Subnetting a Class B Network

As previously mentioned, we have been assigned the IP address 172.16.0.0/16, which means we have 65,536 IP addresses (2^16) available for our network. However, we want to divide this network into smaller subnets.

To subnet this network, we need to borrow bits from the host portion of the IP address. Let’s say we decide to borrow 4 bits to create 16 subnets (2^4). This leaves us with 12 bits for the host portion of the IP address, which gives us 4,096 IP addresses (2^12) per subnet.

To determine the subnet mask for each subnet, we need to determine the value of the bits we borrowed. In this case, we borrowed the first 4 bits, which gives us a value of 240 (11110000) in binary. Therefore, the subnet mask for each subnet will be 255.255.240.0.

The table below shows the network address, subnet mask, and valid host range for each subnet:

subnetting examples for class b

In this example, we created 8 subnets, each with a subnet mask of 255.255.248.0. This means that each subnet has 8,192 IP addresses available for hosts.

Example 3: Subnetting a Class C Network

A Class C network has an IP address range of 192.0.0.0 to 223.255.255.0. Let’s say we have been assigned the IP address 192.168.0.0/24 and we want to subnet it. This means we have 256 IP addresses (2^8) available for our network. However, we want to divide this network into smaller subnets.

To subnet this network, we need to borrow bits from the host portion of the IP address. In this case, we will borrow 3 bits to create 8 subnets (2^3). This leaves us with 5 bits for the host portion of the IP address, which gives us 32 IP addresses (2^5) per subnet.

To determine the subnet mask for each subnet, we need to determine the value of the bits we borrowed. In this case, we borrowed the first 3 bits, which gives us a value of 224 (11100000) in binary. Therefore, the subnet mask for each subnet will be 255.255.255.224.

The table below shows the network address, subnet mask, and valid host range for each subnet:

subnetting examples for class c

Conclusion

Subnetting can seem daunting at first, but it is an important tool for managing IP addresses and optimizing network performance. By dividing a larger network into smaller subnets, we can reduce broadcast traffic and improve network security. The examples above demonstrate how subnetting works and how to determine the subnet mask and valid host range for each subnet.

If you’re new to subnetting, it’s important to take the time to understand the basics before diving into more complex examples.

For additional resources and information on subnetting;

Subnetting Practice: https://www.subnettingpractice.com/
IP Subnet Calculator: https://www.calculator.net/ip-subnet-calculator.html

]]>
A Step-by-Step Guide to Understanding IP Subnetting https://www.expertnetworkconsultant.com/expert-approach-in-successfully-networking-devices/a-step-by-step-guide-to-understanding-ip-subnetting/ Wed, 15 Mar 2023 00:02:48 +0000 http://www.expertnetworkconsultant.com/?p=5948 Continue readingA Step-by-Step Guide to Understanding IP Subnetting]]> Subnetting is the process of dividing a larger network into smaller subnetworks or subnets. This is done by borrowing bits from the host portion of the IP address to create a subnet mask, which determines the range of IP addresses available for hosts in each subnet.

In this article, we will provide a step-by-step guide to help you understand IP subnetting.

Step 1: Determine the IP Address Class

The first step in subnetting is to determine the IP address class. IP addresses are divided into 5 classes: A, B, C, D, and E. Classes A, B, and C are commonly used for networking.

Class A networks have a default subnet mask of 255.0.0.0, Class B networks have a default subnet mask of 255.255.0.0, and Class C networks have a default subnet mask of 255.255.255.0.

Step 2: Determine the Number of Subnets Needed

The next step is to determine the number of subnets needed. This is based on the number of departments, locations, or other factors that require separate networks. To determine the number of subnets, you need to borrow bits from the host portion of the IP address.

For example, if you need 4 subnets, you need to borrow 2 bits (2^2 = 4) from the host portion of the IP address.

Step 3: Determine the Number of Hosts Needed per Subnet

The next step is to determine the number of hosts needed per subnet. This is based on the number of devices that need to be connected to the network in each subnet.

To determine the number of hosts per subnet, you need to subtract 2 from the total number of IP addresses in the subnet. The first IP address is used for the network address, and the last IP address is used for the broadcast address.

For example, if you need 100 hosts per subnet, you need to have a subnet that provides at least 102 IP addresses (100 + 2).

Step 4: Create the Subnet Mask

The subnet mask determines the range of IP addresses available for hosts in each subnet. To create the subnet mask, you need to determine the value of the bits you borrowed from the host portion of the IP address.

For example, if you borrowed 2 bits from the host portion of the IP address, you need to determine the binary value of those bits. In this case, the binary value would be 11 (2 bits).

The subnet mask for this example would be 255.255.255.192 (or /26 in CIDR notation). This subnet mask provides 64 IP addresses (2^6 = 64) per subnet.

Step 5: Determine the Valid Host Range

The valid host range is the range of IP addresses available for hosts in each subnet. To determine the valid host range, you need to subtract 2 from the total number of IP addresses in the subnet.

For example, if you have a subnet with a subnet mask of 255.255.255.192, the total number of IP addresses in the subnet is 64. Subtracting 2 gives you 62, which is the number of valid IP addresses in the subnet.

The first IP address in the subnet is used for the network address, and the last IP address is used for the broadcast address. Therefore, the valid host range for this example would be 192.168.1.1 – 192.168.1.62.

Conclusion

Subnetting is an important tool that allows you to optimize your network performance and improve security. By dividing a larger network into smaller subnets, you can reduce network congestion, increase efficiency, and create separate segments for different departments or functions within your organization.

Follow another step by step walkthrough here – https://www.expertnetworkconsultant.com/subnetting/step-by-step-guide-to-understanding-ip-subnetting/

]]>